

IMPPEACH – Integrated Model and Platform for Harvest Prediction for Canned Peaches

Vangelis Vassiliadis

2019 cofunded Call End-term Project Seminar 30th January 2024

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grand agreement no 862665 ICT-AGRI-FOOD.

Involved countries and partners:

Duration (34 Months – 4 month extension from original July 2023)

Overall budget 666.2 K

Objective

The IMPPeach project's primary objective is to **deliver accurate prediction of yields / quantities and harvest dates** for optimum maturity of peach cultivations (canned peaches varieties) using **a largescale (area vs orchard) data-driven approach**.

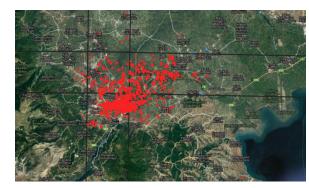
The **benefits** from improved harvest and yield prediction accuracy include

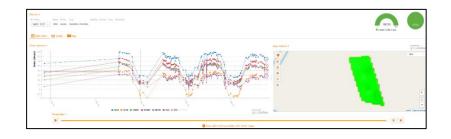
- a) increase in production efficiency optimize production planning
- b) added value for the products
- c) more efficient and targeted marketing / gains in market share and
- d) increased profit margins

These benefits affect not only the canning business itself but are shared with all stakeholders including a larger number of smallholder farmers / suppliers.

Selected research approach, methodology

Large scale (100km2) study of peach orchards, ~2000 fields / >5000Ha with canned peach varieties, more than 1000 farmers in the area of Imathia/Central Macedonia/ Greece, cultivated by producers-members of 3 coops and supplying the canning facility of the project partner ALMME.

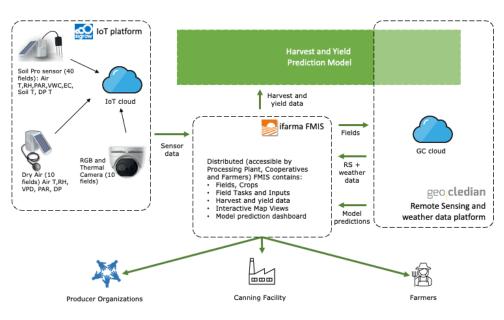

Development of **Prediction Model** by employing AI/ML and statistical methods based on:


- Historical production (yields) records per field and variety.
- Remote sensing (image time series and vegetation indexes) data
- Climatic, soil and cultivation data through both an IoT sensor network and field scouting.

Prediction model evaluation and refinement over a 3-year period.

Integration of model and data into a distributed **FMIS** between farmers, coops and and the fruit canning business's production planning.

Dissemination, communication and exploitation including a study on how the project results can be transferred to other crops and geographical locations.



Major results: Key accomplishments and challenges faced

- Collection, processing and geo-referencing peach production data (deliveries to facility) from 2017-2022 per farmer, field and variety.
 Incomplete and/or inaccurate production records
- IoT sensor installation in 40 pilot fields, model prediction slightly better with IoT data.
 Installation delayed; sensor data used only for 1 season i.s.o. 2 seasons
- 3 Prediction Models LR+ANN+RF developed and evaluated for harvest date and yield.
 0.20 < R² < 0.53, very low to be used for prediction.
- IMPPeach platform realized (Remote Sensing and Weather data geospatial platform, FMIS and integration APIs)
- Dissemination: 2 Fairs, 1 journal paper, 1 conference presentation, Web and Social media

Cooperation with stakeholders, industry partners and/or public and private sector (if applicable)

- Already an industry-oriented project with 1 industry partner and 3 participating SMEs.
- Project presented in Industry fairs in Germany (Agritechnica Nov 2023) and Greece (Agrotica Oct 2022).
- A working platform integrates partner's component systems to a complete solution.
- Prediction results not satisfactory for commercial exploitation.

Opportunities and next steps for innovation

- The project demonstrated that a large-scale approach could deliver a prediction model based on:
 - Publicly available and coarse remote sensing, weather and soil data
 - Historical production (harvest) records
 - Minimum equipment for ground truthing
- But ...
 - Prediction accuracy must be improved in order for the approach to be commercially viable.
 - Improved data processing is needed to validate production records and remove 'noise' : incomplete and/or inaccurate records.
 - Targeted data collection to validate complimentary approaches (e.g. GDHmodels) should be exploited.

Summary and Conclusion takeaways and lessons learned

- Analysis of historical production / harvesting records show that harvest start dates correlate with year across varieties confirming that climate and crop variety are the most important parameters that affect harvest time and yield.
- Use of locally installed sensors/weather stations yield better results than using data from weather services.
- Remote sensing does not have adequate temporal and spatial resolution to be reliably used for Blossom date detection.
- Prediction Model accuracy, both for harvest date and yield, is not sufficient for commercial exploitation of the developed approach and platform.
- Data-driven approaches to digital agriculture require the availability of highquality data sets. Farmers, cooperatives and Ag businesses must invest in the collection and curation of data from the farms.

LET'S KEEP IN TOUCH!

Please feel always free to reach out to us.

TWITTER - LINKEDIN

https://twitter.com/geocledian

WEBSITE

imppeach-project.eu

EMAIL

v.vassilidis@agrostis.gr

Thank you for your attention!