

MERIAVINO

Multiscale Sensing for Disease Monitoring in Vineyard Production

Adel Hafiane

2019 cofunded Call End-term Project Seminar 30th January 2024

Involved countries and partners

Partner	Туре	Country	
INSA CVL	Academic	France	
CMU	Academic	Romania	
SVM	Academic	Romania	
UNIWA	Academic	Greece	
IFV	Service	France	
ATOS	Company	France	

Duration: 36 months

Overall budget : 700 K€

1

Collect environmental data across various scales to capture subtle changes in the crop.

2

Leverage machine learning and data fusion to achieve early detection of anomalies in vineyards.

3

Proof of concept for an Al-driven decision system designed for vineyard monitoring, and decision-making processes.

Heterogenous data from vineyards in different countries will enable to develop robust decision tools based on AI

Methodology: multiscale approach

Solar Voltage	ATH-2S Air Temperature	ATH-2S Relative Humidity	Leaf Wetness Sensor-1	Leaf Wetness Sensor-2
15 20 25	ZU.Z30 °C	39.582 %	-0.15 %	0.13 %
•	↑ 3%	↓ 9%	↑ 650%	↓ 35%
19.526 V NORMAL	370	V 970	1 030 %	¥ 33 %
2022-09-19 15:35:40	2022-09-19 15:35:54	2022-09-19 15:35:54		2022-09-19 15:35:47
Soil Oxygen Sensor	PAR Sensor mnla3l803 par-umol	PAR S	ensor	Vapour Pressure Deficit mnla3l803 VPD
20.357 %	As A L L A M D L	1282.374	umol/m2/s	7
NORMAL		NOR	MAL	MMM.
↓ 1%	-1k 14. Sep 16. Sep 18. Sep	— ↓	4%	-2 14. Sep 16. Sep 18. Sep
2022-09-19 15:36:01		2022-09-11	9 15:36:08	

Data acquisition and storage

Data analysis and predection

Results

- Development and implementation of real-time IoT acquisition system, collecting data from three countries.
- 2 to 3 years of data collection with agronomic analysis.
- Al-driven downy mildew detection methods using IoT and imaging system.
- High accuracy detection rate in experimental data
- Federated learning as a new approach for disease detection
- Concept validation of privacy and data protection

Opportunities and next steps for innovation

- Long term data acquisition and agronomic analysis
- Implement AI in edge for local processing
- Al-driven aided decision system for end users
- Augmented reality and friendly user interface application
- Robotic approach for precise monitoring

Summary and Conclusion

- Showing the potential of the proposed approach to improve vineyard monitoring
- Al has important potential to improve precision agriculture
- Creating nice synergy between different project partners opening long term collaborations
- ~20 international paper, 1 patent
- 1 section organizer in conference, 2 workshop organizers with stakeholders

LET'S KEEP IN TOUCH!

EMAIL adel.hafiane@insa-cvl.fr

Thank you for your attention!